LA INFLUENCIA DE LA COBERTURA DEL SUELO EN LAS COMUNIDADES DE PERIPHYTON EN ARROYOS DEL NORTE DE GUATEMALA
DOI:
https://doi.org/10.26462/33.2.5Palabras clave:
algas bentónicas, cambio de cobertura terrestre, pastos, aceite de palmaResumen
La conversión de bosques tropicales por palma aceitera y potreros impactan en las comunidades acuáticas. Estudiamos los cambios en la riqueza, diversidad y comunidades de perifiton en arroyos de bosques, potreros y plantaciones de palma aceitera, con y sin franjas ribereñas. Los arroyos en bosques o plantaciones con franjas ribereñas mostraron mayor cobertura de dosel, bajas temperaturas de agua y menor entrada de luz que los arroyos en potreros y plantaciones sin franjas ribereñas. Estos últimos presentaron mayor biomasa de perifiton, evidenciada por altos niveles de clorofila-a. La riqueza de taxa y diversidad fueron significativamente mayores en arroyos de potreros en comparación con los de bosque y palma aceitera. En los arroyos de plantaciones de palma predominaban taxones como Navicula y Gyrosigma. En los de potreros Cymbella y Gonatozygon, y en los de bosque, Phormidium y Eunotia. No se encontraron diferencias significativas en las comunidades de perifiton entre los dos tipos de cultivo de palma aceitera, lo que indica que las franjas de conservación pueden no proteger eficazmente a las comunidades de perifiton en estos entornos. Destacamos la necesidad de realizar más estudios sobre los impactos de las prácticas agrícolas en los productores primarios acuáticos.
Descargas
Citas
Afandi, A.M., Zuraidah, Y., Nurzuhaili, H.A.Z.A., Zulkifli, H., & Yaqin, M. (2017). Managing soil deterioration and erosion under oil palm. Oil Palm Bulletin 75, 75(November), 1–10.
Alatalo, R.V. (1981). Problems in the Measurement of Evenness in Ecology. Oikos, 37(2), 199–204. https://doi.org/https://doi.org/10.2307/3544465
Allan, J.D., & Castillo, María. M. (2007). Stream Ecology. Structure and Function of Running Waters. Second edition. In Springer Dordrecht. https://doi.org/https://doi.org/10.1007/978-1-4020-5583-6
Anderson, M.J. (2017). Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online, 1–15. https://doi.org/10.1002/9781118445112.stat07841
Arriola, I., Reyes, F., & Javier, P. (2015). Procedimiento operacional estandar: Analisis de plancton.
Azim, M.E. (2009). Photosynthetic Periphyton and Surfaces. Encyclopedia of Inland Waters, 184–191. https://doi.org/10.1016/B978-012370626-3.00144-7
Bates, D., Mächler, M., Bolker, B.M., & Walker, S.C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01
Bellinger, E.G., & Sigee, D.C. (2010). Sampling, Biomass Estimation and Counts of Freshwater Algae. In Freshwater Algae (pp. 41–97). Wiley. https://doi.org/10.1002/9780470689554.ch2
Bellinger, E., & Sigee, D. (2015). Freshwater Algae: Identification, Enumeration and Use as Bioindicators. In A Key to the More Frequently Occurring Freshwater Algae. (Second). John Wiley & Sons, Ltd.
Bere, T., & Tundisi, J.G. (2011). Influence of land-use patterns on benthic diatom communities and water quality in the tropical monjolinho hydrological basin, São Carlos-SP, Brazil. Water SA, 37(1), 93–102. https://doi.org/10.4314/wsa.v37i1.64112
Bicudo, C.E. M., & Menezes, M. (2006). Gêneros de algas de águas continentais do Brasil: Chave para identicação e descrições. São Carlos, SP: RiMa.
Biggs, B.J.F., & Kilroy, C. (2000). Stream Periphyton Monitoring Manual. In Network.
Bona, F., Falasco, E., Fassina, S., Griselli, B., & Badino, G. (2007). Characterization of diatom assemblages in mid-altitude streams of NW Italy. Hydrobiologia, 583(1), 265–274. https://doi.org/10.1007/s10750-006-0537-x
Brett, M.T., Bunn, S.E., Chandra, S., Galloway, A.W.E., Guo, F., Kainz, M.J., Kankaala, P., Lau, D.C.P., Moulton, T.P., Power, M.E., Rasmussen, J.B., Taipale, S.J., Thorp, J.H., & Wehr, J.D. (2017). How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? In Freshwater Biology (Vol. 62, Issue 5, pp. 833–853). Blackwell Publishing Ltd. https://doi.org/10.1111/fwb.12909
Burgos-Caraballo, S., Cantrell, S.A., & Ramírez, A. (2014). Diversity of Benthic Biofilms Along a Land Use Gradient in Tropical Headwater Streams, Puerto Rico. Microbial Ecology, 68(1), 47–59. https://doi.org/10.1007/s00248-014-0401-x
Carr, D.L. (2004). Ladino and Q'eqchí Maya land use and land clearing in the Sierra de Lacandón National Park, Petén, Guatemala. In Agriculture and Human Values (Vol. 21).
Chellaiah, D., & Yule, C.M. (20182018a). Effect of riparian management on stream morphometry and water quality in oil palm plantations in Borneo. Limnologica, 69(November), 72–80. https://doi.org/10.1016/j.limno.2017.11.007
Chellaiah, D., & Yule, C.M. (2018b). Litter decomposition is driven by microbes and is more influenced by litter quality than environmental conditions in oil palm streams with different riparian types. Aquatic Sciences, 80(4). https://doi.org/10.1007/s00027-018-0595-y
Chua, K.W.J., Lim, F.K.S., Ahmad, A.B., Tan, H.H., & Yeo, D.C.J. (2020). Morphological traits mediate fish occurrences in oil palm-impacted tropical streams. Freshwater Biology, 65(6), 1153–1164. https://doi.org/10.1111/fwb.13500
Colwell, R.K., Chao, A., Gotelli, N.J., Lin, S.Y., Mao, C.X., Chazdon, R.L., & Longino, J.T. (2012). Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology, 5(1), 3–21. https://doi.org/10.1093/jpe/rtr044
Comte, I., Colin, F., Whalen, J.K., Grünberger, O., & Caliman, J.P. (2012). Agricultural Practices in Oil Palm Plantations and Their Impact on Hydrological Changes, Nutrient Fluxes and Water Quality in Indonesia. A Review. In Advances in Agronomy (Vol. 116, pp. 71–124). https://doi.org/10.1016/B978-0-12-394277-7.00003-8
CONAP. (2003). Plan Maestro, Parque Nacional Laguna Lachuá, Cobán, Alta Verapaz. Guatemala: Instituto Nacional de Bosques y Sistema Guatemalteco de Áreas Protegidas.
Cox, E. (1996). Identification of Freshwater Diatoms from Live Material. Chapman & Hall.
da Silva, F.K.L., Fonseca, B.M., & Felisberto, S.A. (2018). Community structure of periphytic zygnematophyceae (Streptophyta) in urban eutrophic ponds from central brazil (goiânia, go). Acta Limnologica Brasiliensia, 30. https://doi.org/10.1590/s2179-975X5117
Daruich, J., Tripole, S., Gil, M.A., & Vallania, A. (2013). Algal and Cyanobacterial communities in two rivers of the province of San Luis (Argentina) subjected to anthropogenic influence. Acta Limnologica Brasiliensia, 25(1), 79–90. https://doi.org/10.1590/s2179-975x2013000100009
Davis, K.F., Koo, H.I., Dell'Angelo, J., D'Odorico, P., Estes, L., Kehoe, L.J., Kharratzadeh, M., Kuemmerle, T., Machava, D., Pais, A. de J.R., Ribeiro, N., Rulli, M.C., & Tatlhego, M. (2020). Tropical forest loss enhanced by large-scale land acquisitions. Nature Geoscience, 13(7), 482–488. https://doi.org/10.1038/s41561-020-0592-3
Day, C.P.Æ.J., & Dhlomo, Æ.M.C.Æ.E. (2007). Epiphytic diatoms associated with a submerged macrophyte, Vallisneria aethiopica , in the shallow marginal areas of Sanyati Basin (Lake Kariba): a preliminary assessment of their use as biomonitoring tools.169–181. https://doi.org/10.1007/s10452-006-9073-z
De Cáceres, M., & Legendre, P. (2009). Associations between species and groups of sites: Indices and statistical inference. Ecology, 90(12), 3566–3574. https://doi.org/10.1890/08-1823.1
Dodds, W.K., Jones, J.R., & Welch, E.B. (1998). Suggested classification of stream trophic state: Distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Research, 32(5), 1455–1462. https://doi.org/10.1016/S0043-1354(97)00370-9
Donald, P.F. (2016). Biodiversity Impacts of Some Agricultural Commodity Production Systems. 18(1), 17–37.
Eloranta, P., & Soininen, J. (2002). Ecological status of some Finnish rivers evaluated using benthic diatom communities. Journal of Applied Phycology, 14(1), 1–7. https://doi.org/10.1023/A:1015275723489
Faruk, A., Belabut, D., Ahmad, N., Knell, R.J., & Garner, T.W.J. (2013). Effects of Oil-Palm Plantations on
Diversity of Tropical Anurans. Conservation Biology, 27(3), 615–624. https://doi.org/10.1111/cobi.12062
Ferreira, M.C., & Begot, T.O. (2018). Effects of oil palm plantations on habitat structure and fish assemblages in Amazon streams. Fao 2013.
Fitzherbert, E.B., Struebig, M.J., Morel, A., Danielsen, F., Brühl, C.A., Donald, P.F., & Phalan, B. (2008).
How will oil palm expansion affect biodiversity? Trends in Ecology and Evolution, 23(10), 538–545. https://doi.org/10.1016/j.tree.2008.06.012
Furumo, P.R., & Aide, T.M. (2017). Characterizing commercial oil palm expansion in Latin America: Land use change and trade. Environmental Research Letters, 12(2). https://doi.org/10.1088/1748-9326/aa5892
Gentleman, R., Hornik, K., & Parmigiani, G. (2008). Numerical Ecology with R. In Applied Spatial Data Analysis with R. https://doi.org/10.1007/978-0-387-78171-6
Giam, X. (2017). Global biodiversity loss from tropical deforestation. Proceedings of the National Academy of Sciences of the United States of America, 114(23), 5775–5777. https://doi.org/10.1073/pnas.1706264114
Giam, X., Hadiaty, R.K., Tan, H.H., Parenti, L.R., Wowor, D., Sauri, S., Chong, K.Y., Yeo, D.C.J., & Wilcove, D.S. (2015). Mitigating the impact of oil-palm monoculture on freshwater fishes in Southeast Asia. Conservation Biology, 00(0),1–11. https://doi.org/10.1111/cobi.12483
Gonçalves, J.F., de Souza Rezende, R., Gregório, R.S., & Valentin, G.C. (2014). Relationship between dynamics of litterfall and riparian plant species in a tropical stream. Limnologica, 44, 40–48. https://doi.org/10.1016/j.limno.2013.05.010
Google Earth engine. (2021). Ecorregión Lachuá, Alta Verapaz, Guatemala. 15° 57' 40.27”N, 90° 38' 58.68”W, Eye alt 10.25km. DigitalGlobe 2012. http://www.earth.google.com.
Graesser, J., Aide, T.M., Grau, H.R., & Ramankutty, N. (2015). Cropland/pastureland dynamics and the
slowdown of deforestation in Latin America. Environmental Research Letters, 10(3). https://doi.org/10.1088/1748-9326/10/3/034017
GREPALMA. (2019). Agroindustria sostenible de aceite de palma en guatemala: Estadisticas Socieconomicas 2019.
Guo, F., Kainz, M.J., Sheldon, F., & Bunn, S.E. (2016). The importance of high-quality algal food sources in stream food webs - current status and future perspectives. In Freshwater Biology (Vol. 61, Issue 6, pp. 815–831). Blackwell Publishing Ltd. https://doi.org/10.1111/fwb.12755
Hagerthey, S.E., Bellinger, B.J., Gantar, M., Gaiser, E., & Wheeler, K. (2011). Everglades Periphyton : A
Biogeochemical Perspective. Critical Reviews in Envirnmental Science and Technilogy, 41, 309–343. https://doi.org/10.1080/10643389.2010.531218
Hall, R.O., & Meyer, J.L. (1998). The trophic significance of bacteria in a detritus-based stream food web. Ecology, 79(6), 1995–2012. https://doi.org/10.1890/0012-9658(1998)079[1995:TTSOBI]2.0.CO;2
Herberich, E., Sikorski, J., & Hothorn, T. (2010). A robust procedure for comparing multiple means under heteroscedasticity in unbalanced designs. PLoSONE, 5(3). https://doi.org/10.1371/journal.pone.0009788
Hill, W. (1996). Effects of lightning. In R.J. Stevenson, M.L. Bothwell, & L.L. Rex (Eds.), Algal Ecology.
Freshwater Benthic Ecosystems (pp. 121–148). Elsevier Inc. https://doi.org/10.1093/nq/s4-vi.143.253a
Hsieh, T.C., Ma, K.H., & Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). 2014, 1451–1456. https://doi.org/10.1111/2041-210X.12613
Jacobsen, D., Laursen, S.K., Hamerlik, L., Moltesen, K., Michelsen, A., & Christoffersen, K.S. (2016). Fish on the roof of the world: Densities, habitats and trophic position of stone loaches (Triplophysa) in Tibetan streams. Marine and Freshwater Research, 68(1), 53–64. https://doi.org/10.1071/MF15225
Kaimowitz, D. (1996). Livestock and deforestation Central America in the 1980s and 1990s: a policy perspective. Centre for International Forestry Research. https://www.ciforicraf. org/knowledge/publication/88/
Karlson, B., Cusack, C., & Bresnan, E. (2010). Microscopic and molecular methods for quantitative phytoplankton analysis. Intergovernmental Oceanographic Commission Manuals and Guides;55.
Koh, L.P., & Wilcove, D.S. (2007). Cashing in palm oil for conservation. Nature, 448(7157), 993–994. https://doi.org/10.1038/448993a
Komárek, J., & Johansen, J.R. (2015). Filamentous Cyanobacteria. In Freshwater Algae of North America: Ecology and Classification. https://doi.org/10.1016/B978-0-12-385876-4.00004-9
Koren, N., & Klein, M. (2000). Rate of sedimentation in Lake Kinneret, Israel: Spatial and temporal variations. Earth Surface Processes and Landforms, 25(8), 895–904. https://doi.org/10.1002/1096-9837(200008)25:8<895::AIDESP109>3.0.CO;2-9
Kruess, A., & Tscharntke, T. (2002). Contrasting responses of plant and insect diversity to variation in grazing intensity. Biological Conservation, 106, 293–302. https://doi.org/10.1016/S0006-3207(01)00255-5
Laurance, W.F., Sayer, J., & Cassman, K.G. (2014). Agricultural expansion and its impacts on tropical nature. Trends in Ecology and Evolution, 29(2), 107–116. https://doi.org/10.1016/j.tree.2013.12.001
Lemes da Silva, A.L., Lemes, W.P., Andriotti, J., Petrucio, M.M., & Feio, M.J. (2020). Recent land-use changes affect stream ecosystem processes in a subtropical island in Brazil. Austral Ecology, 45(5), 644–658. https://doi.org/10.1111/aec.12879
Li, L., Zheng, B., & Liu, L. (2010). Biomonitoring and bioindicators used for river ecosystems: Definitions, approaches and trends. Procedia Environmental Sciences, 2, 1510–1524. https://doi.org/10.1016/j.proenv.2010.10.164
Lindstrøm, E.A., Johansen, S.W., & Saloranta, T. (2004). Periphyton in running waters – Longterm studies of natural variation. Hydrobiologia, 521(1–3), 63–86. https://doi.org/10.1023/B:HYDR.0000026351.68927.ee
Lucey, J.M., Barclay, H., Gray, C.L., Luke, S.H., Nainar, A., Turner, E.C., Reynolds, G., Slade, E.L., Snaddon, J.L., Struebig, M., & Walsh, R. (2018). Simplified Guide: Management and Rehabilitation of Riparian Reserves. https://doi.org/https://rspo.org/wp-content/uploads/simplified-guide-_-management-and-rehabilitation-of-riparianreserves-english.pdf
Luiza-Andrade, A., Brasil, L.S., Benone, N.L., Shimano, Y., Farias, A.P.J., Montag, L.F., Dolédec, S., & Juen, L. (2017). Influence of oil palm monoculture on the taxonomic and functional composition of aquatic insect communities in eastern Brazilian Amazonia. Ecological Indicators, 82(June), 478–483. https://doi.org/10.1016/j.ecolind.2017.07.006
Luke, S.H., Barclay, H., Bidin, K., Chey, V.K., Ewers, R.M., Foster, W.A., Nainar, A., Pfeifer, M., Reynolds, G., Turner, E.C., Walsh, R.P.D., & Aldridge, D.C. (2017). The effects of catchment and riparian forest quality on stream environmental conditions across a tropical rainforest and oil palm landscape in Malaysian
Borneo. Ecohydrology, 10(4). https://doi.org/10.1002/eco.1827
MAGA. (2012). Diagnóstico de la Franja Transversal del Norte y definición de las líneas estratégicas de acción del MAGA.
Maishale, D.P., & Ulavi, S. (2015). Bacillariophyceae as Indictors of Ecological Status in Kabini River. International Journal of Science Technology & Engineering, 2(02), 76–82.
Makherana, F., Cuthbert, R.N., Wasserman, R.J., Chauke, G.M., & Dondofema, F. (2022). Distribution, drivers and population structure of the invasive alien snail Tarebia granifera in the Luvuvhu system, South Africa. River Research and Applications, 38(8), 1349–1523. https://doi.org/10.1002/rra.3937
Mangadze, T., Bere, T., & Mwedzi, T. (2015). Epilithic diatom flora in contrasting land-use settings in tropical streams, Manyame Catchment, Zimbabwe. Hydrobiologia, 753(1), 163–173. https://doi.org/10.1007/s10750-015-2203-7
Manoylov, K.M. (2014). Taxonomic identification of algae (morphological and molecular): species concepts, methodologies, and their implications for ecological bioassessment. Journal of Phycology, 50(3), 409–424. https://doi.org/10.1111/jpy.12183
March, J.G., & Pringle, C.M. (2003). Food web structure and basal resource utilization along a tropical island stream continuum, Puerto Rico. Biotropica, 35(1), 84–93. https://doi.org/10.1111/j.1744-7429.2003.tb00265.x
Marks, J.C. (2019). Revisiting the Fates of Dead Leaves That Fall into Streams. https://doi.org/10.1146/annurev-ecolsys-110218
Meijaard, E., Garcia-Ulloa, J., Sheil, D., Wich, S.A., Carlson, K.M., Juffe-Bignoli, D., & Brooks, T.M. (2018). Oil palm and biodiversity: a situation analysis by the IUCN Oil Palm Task Force. In IUCN, Gland, Switzerland, Gland, Switzerland. https://doi.org/10.2305/iucn.ch.2018.11.en
Mercer, E.V., Mercer, T.G., & Sayok, A.K. (2014). Effects of forest conversions to oil palm plantations on freshwater macroinvertebrates: a case study from Sarawak, Malaysia. Journal of Land Use Science, 9(3), 260–277. https://doi.org/10.1080/1747423X.2013.786149
Miranda, N.A.F., Perissinotto, R., & Appleton, C.C. (2011). Feeding dynamics of the invasive gastropod Tarebia granifera in coastal and estuarine lakes of northern KwaZulu-Natal, South Africa. Estuarine, Coastal and Shelf Science, 91(3), 442–449. https://doi.org/10.1016/j.ecss.2010.11.007
Montgomery, R.A., & Chazdon, R.L. (2001). Forest Structure, Canopy Architecture, and Light Transmittance in Tropical Wet Forests. Ecology, 82(10), 2707. https://doi.org/10.2307/2679955
Mori, T., Miyagawa, Y., Onoda, Y., & Kayaba, Y. (2018). Flow-velocity-dependent effects of turbid water on periphyton structure and function in flowing water. Aquatic Sciences, 80(1), 1–12. https://doi.org/10.1007/s00027-017-0552-1
Moslemi, J.M., Snider, S.B., Macneill, K., Gilliam, J.F., & Flecker, A.S. (2012). Impacts of an Invasive Snail (Tarebia granifera) on Nutrient Cycling in Tropical Streams: The Role of Riparian Deforestation in Trinidad, West Indies. PLoSONE, 7(6), 1–9. https://doi.org/10.1371/journal.pone.0038806
Myers, N. (1988). Threatened Biotas: “Hot Spots” in tropical forests. Environmentalist, 8(3), 187–208.
Naiman, R.J., & Décamps, H. (1997). The ecology of interfaces: Riparian zones. Annual Review of Ecology and Systematics, 28(102), 621–658. https://doi.org/10.1146/annurev.ecolsys.28.1.621
Neill, C., Deegan, L.A., Thomas, S.M., & Cerri, C.C. (2001). Deforestation for pasture alters nitrogen and phosphorus in small Amazonian streams. Ecological Applications, 11(6), 1817–1828. https://doi.org/10.1890/1051-0761(2001)011[1817:DFPANA]2.0.CO;2
Osborne, L., & Kovacic, D. (1993). Riparian vegetated buffer strips in water quality restoration and stream management. Freshwater Biology, 29(2), 243–258. https://doi.org/10.1111/j.1365-2427.1993.tb00761.x
Pacheco, J.P., Calvo, C., Aznarez, C., Barrios, M., Meerhoff, M., Jeppesen, E., & Baattrup-Pedersen, A. (2022). Periphyton biomass and life-form responses to a gradient of discharge in contrasting light and nutrients scenarios in experimental lowland streams. Science of the Total Environment, 806, 150505. https://doi.org/10.1016/j.scitotenv.2021.150505
Pápista, É., & Böddi, B. (2002). Chlorophyll-a determination with ethanol - a critical test. Hydrobiologia, 485, 191–198.
Pardo, L.E., Campbell, M.J., Edwards, W., Clements, G.R., & Laurance, W.F. (2018). Terrestrial mammal responses to oil palm dominated landscapes in Colombia. PLoS ONE, 13(5), 1–22. https://doi.org/10.1371/journal.pone.0197539
Pawlowski, J., Bruce, K., Panksep, K., Aguirre, F.I., Amalfitano, S., Apothéloz-Perret-Gentil, L., Baussant, T., Bouchez, A., Carugati, L., Cermakova, K., Cordier, T., Corinaldesi, C., Costa, F.O., Danovaro, R., Dell'Anno, A., Duarte, S., Eisendle, U., Ferrari, B.J.D., Frontalini, F., … Fazi, S. (2022). Environmental DNA metabarcoding for benthic monitoring: A review of sediment sampling and DNA extraction methods. Science of the Total Environment, 818. https://doi.org/10.1016/j.scitotenv.2021.151783
Porter-Goff, E.R., Boylen, C.W., & Nierzwicki-Bauer, S.A. (2010). Periphyton dynamics along a stream with a gradient of human impact. Journal of Freshwater Ecology, 25(3), 385–394. https://doi.org/10.1080/02705060.2010.9664381
Prescott, G.W. (1978). How to know the freshwater algae (Third). University of Montana. The Pictured Key Nature Series.
Qaim, M., Sibhatu, K.T., Siregar, H., & Grass, I. (2020). Environmental, economic, and social consequences of the oil palm boom. Annual Review of Resource Economics, 12, 321–344. https://doi.org/10.1146/annurev-resource-110119-024922
QGIS Development Team. (2019). Qgis. Open Source Geospatial Foundation Project. https://qgis.org/en/site/.
Quezada, M.L., Arroyo-Rodríguez, V., Pérez-Silva, E., & Aide, T.M. (2014). Land cover changes in the Lachuá region, Guatemala: Patterns, proximate causes, and underlying driving forces over the last 50 years. Regional Environmental Change, 14(3), 1139–1149. https://doi.org/10.1007/s10113-013-0548-x
Quinn, J.M., Cooper, A.B., Davies-Colley, R.J., Rutherford, J.C., & Williamson, R.B. (1997). Land use effects on habitat, water quality, periphyton, and benthic invertebrates in Waikato, New Zealand, hill-country streams. New Zealand Journal of Marine and Freshwater Research, 31(5), 579–597. https://doi.org/10.1080/00288330.1997.9516791
Ramírez-Babativa, D., & Vázquez, G. (2015). Metabolismo del epiliton de la cuenca alta del río La Antigua (México) en microcosmos experimentales. INECOL, 1–11. https://cici.unillanos.edu.co/media2018/memorias/CICI_2018_paper_116.pdf
RAMSAR. (2004). Ficha Informativa de los Humedales de Ramsar (FIR).
Reichenberger, S., Bach, M., Skitschak, A., & Frede, H.G. (2007). Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; A review. Science of the Total Environment, 384(1–3), 1–35. https://doi.org/10.1016/j.scitotenv.2007.04.046
Reiners, W.A., Bouwman, A.F., Parsons, W F.J., & Keller, M. (1994). Tropical rain forest conversion to pasture: Changes in vegetation and soil properties. Ecological Applications, 4(2), 363–377. https://doi.org/10.2307/1941940
Rojas, O., Avendaño, C., & Isakson, R. (2022). Water quality in The Lachuá Ecoregion Landscape: Comparing streams from Forest, Milpa, and an Oil Palm plantation. Ciencia, Tecnología y Salud, 9(1), 21–42. https://doi.org/10.36829/63cts.v9i1.921
Rojas-Castillo, O.A., Kepfer Rojas, S., Juen, L., Montag, L., Carvalho, F., Mendes, T., Chua, K., Wilkinson, C., Amal, M., Fahmi-Ahmad, M., & Jacobsen, D. (2024). Meta-analysis contrasting freshwater biodiversity in forests and oil palm plantations with and without riparian buffers. Conservation Biology, 38(1). https://doi.org/10.1111/cobi.14172
Rojas-Castillo, O.A., Kepfer-Rojas, S., & Jacobsen, D. (2024). Land-use effects on leaf-litter breakdown in streams in a tropical lowland catchment. Aquatic Sciences, 86(3). https://doi.org/10.1007/s00027-024-01079-6
Rojas-Castillo, O.A., Kepfer-Rojas, S., Vargas, N., & Jacobsen, D. (2023). Forest buffer-strips mitigate the negative impact of oil palm plantations on stream communities. Science of the Total Environment, 873. https://doi.org/10.1016/j.scitotenv.2023.162259
Sagarra, M.A. (2017). The importance of microhabitat for the benthic algae of a Norwegian oligotrophic
river: implications for diversit, biomass and ecological indices.
Sahat, S., Yusop, Z., Askari, M., & Ziegler, A.D. (2016). Estimation of Soil Erosion Rates in Oil Palm Plantation with Different Land Cover. IOP Conference Series: Materials Science and Engineering, 136(1). https://doi.org/10.1088/1757-899X/136/1/012086
Salomoni, S.E., Rocha, O., Callegaro, V.L., & Lobo, E.A. (2006). Epilithic diatoms as indicators of water quality in the Gravataí river, Rio Grande do Sul, Brazil. Hydrobiologia, 559(1), 233–246. https://doi.org/10.1007/s10750-005-9012-3
Schneider, S.C., Kahlert, M., & Kelly, M.G. (2013). Interactions between pH and nutrients on benthic algae in streams and consequences for ecological status assessment and species richness patterns. Science of the Total Environment, 444, 73–84. https://doi.org/10.1016/j.scitotenv.2012.11.034
Sibhatu, K.T. (2023). Oil palm boom: its socioeconomic use and abuse. Frontiers in Sustainable Food Systems, 7(June). https://doi.org/10.3389/fsufs.2023.1083022
Søndergaard, M., & Riemann, B. (1979). Ferskvandsbiologiske analysemetoder (In Danish). Akademisk Forlag, Copenhagen.
Stevenson, J., & Bahls, L. (1999). Periphyton protocols. In Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish - Second Edition (pp. 1–23). U.S. Environmental Protection Agency; Office of Water; https://archive.epa.gov/water/archive/web/html/index-14.html
Stevenson, J., & Smol, J. (2015). Use of Algae in Ecological Assessments. In J. Wehr, R. Sheath, & P. Kociolek (Eds.), Freshwater Algae of North America: Ecology and Classification (pp. 921–962). Elsevier Inc. https://doi.org/10.1016/B978-0-12-385876-4.00021-9
Strunecký, O., Komárek, J., Johansen, J., Lukešová, A., & Elster, J. (2013). Molecular and morphological criteria for revision of the genus Microcoleus (Oscillatoriales, Cyanobacteria). Journal of Phycology, 49(6), 1167–1180. https://doi.org/10.1111/jpy.12128
Teneva, I., Belkinova, D., Paunova-Krasteva, T., Bardarov, K., Moten, D., Mladenov, R., & Dzhambazov, B.(2023).Polyphasic characterisation of Microcoleus autumnalis (Gomont, 1892) Strunecky, Komárek &
J.R. Johansen, 2013 (Oscillatoriales, Cyanobacteria) using a metabolomic approach as a complementary tool. Biodiversity Data Journal, 11. https://doi.org/10.3897/BDJ.11.E100525
Tromboni, F., Lourenço-Amorim, C., Neres-Lima, V., Thomas, S.A., Silva-Araújo, M., Feijó-Lima, R., Silva-Júnior, E.F., Heatherly, T., Moulton, T.P., & Zandonà, E. (2019). Conversion of tropical forests to agriculture alters the accrual, stoichiometry, nutrient limitation, and taxonomic composition of stream periphyton. International Review of Hydrobiology, 104(5–6), 116–126. https://doi.org/10.1002/iroh.201801963
Van Dam, H., Mertens, A., & Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Netherlands Journal of Aquatic Ecology, 28(1), 117–133. https://doi.org/10.1007/BF02334251
Vázquez, G., Aké-Castillo, J.A., & Favila, M.E. (2011). Algal assemblages and their relationship with water quality in tropical Mexican streams with different land uses. Hydrobiologia, 667(1), 173–189. https://doi.org/10.1007/s10750-011-0633-4
Vijay, V., Pimm, S., Jenkins, C., & Smith, S. (2016). The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss. PLoS ONE, 11(7), 1–19. https://doi.org/https://doi.org/10.1371/journal.pone.0159668
Von Schiller, D., Martí, E., Riera, J.L., & Sabater, F. (2007). Effects of nutrients and light on periphyton biomass and nitrogen uptake in Mediterranean streams with contrasting land uses. Freshwater Biology, 52(5), 891–906. https://doi.org/10.1111/j.1365-2427.2007.01742.x
Wang, T., Zhong, M., Lu, M., Xu, D., Xue, Y., Huang, J., Blaney, L., & Yu, G. (2021). Occurrence, spatiotemporal distribution, and risk assessment of current-use pesticides in surface water: A case study near Taihu Lake, China. Science of the Total Environment, 782, 146826. https://doi.org/10.1016/j.scitotenv.2021.146826
Wassenaar, T., Gerber, P., Verburg, P.H., Rosales, M., Ibrahim, M. & Steinfeld, H. (2007). Projecting land use changes in the Neotropics: The geography of pasture expansion into forest. Global Environmental Change, 17(1), 86–104. gloenvcha.2006.03.007
Wehr, J., & Sheath, R. (2003). Freshwater Algae of North America: Ecology and Classification. Academic Press, an imprint of Elsevier.
Whitton, B.A. (2012). Ecology of cyanobacteria II: Their diversity in space and time. Ecology of Cyanobacteria II: Their Diversity in Space and Time, 9789400738(2), 1–760. https://doi.org/10.1007/978-94-007-3855-3
Wilkinson, C.L., Yeo, D.C.J., Heok, T., Hadi, A., & Ewers, R.M. (2018). Land-use change is associated with a signi fi cant loss of freshwater fish species and functional richness in Sabah, Malaysia.222 (March), 164–171. https://doi.org/10.1016/j.biocon.2018.04.004
Wu, Y. (2017). Periphyton. Functions and Application in Environmental Remediation. Elsevier.