SENSITIVITY OF Hyalella curvispina SHOEMAKER, 1942 (CRUSTACEA, AMPHIPODA) TO COPPER, PHENANTHRENE AND SALINITY

Authors

  • Maria Elena Bouvier Oceanografía y Ecología Marina, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Universidad de la República.
  • Pablo Muniz Maciel Oceanografía y Ecología Marina, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias, Universidad de la República.

DOI:

https://doi.org/10.26462/30.2.2

Keywords:

Toxicity test, Contamination, Ecotoxicology, Amphipod , Uruguay

Abstract

Bioassays are a useful tool for detecting possible impacts of pollutants on biota. Hyalella curvispina is an epibenthic amphipod native to South America used to evaluate the toxicity of environmental samples. However, information gaps persist regarding their sensitivity to certain pollutants and their tolerance to salinity, so this research provides new data to characterize their response. In this work, the sensitivity to copper and phenanthrene of Hyalella curvispina was analyzed, as well as its tolerance to salinity. The 96h LC50 obtained for copper was 184 µg Cu / l, while the 10-day LC50 was 68 µg Cu / l. Regarding salinity, the results showed an LC50 96h = 13, the LC50 10 days = 11 and a significant inhibition in growth of 18% compared to the control in organisms exposed to 17.2 salinity. For phenanthrene, no significant lethal response was obtained in any of the applied treatments, which suggests that H. curvispina would have a greater tolerance to phenanthrene than other amphipods, however, these preliminary results should be verified covering higher levels of exposure.

Downloads

Download data is not yet available.

References

Amiard-Triquet, C. (2015). Introduction. En: C. Amiard-Triquet, J.C. Amiard y C. Mouneyrac (Eds.) Aquatic Ecotoxicology (pp. 1–23). Academic Press.

Borgmann, U., Couillard, Y., Doyle, P. y Dixon, D.G. (2005). Toxicity of sixty-three metals and metalloids to Hyalella azteca at two levels of water hardness. Environmental Toxicology and Chemistry, 24(3), 641–652.

Bouvier, M.E., Pérez, A. y Muniz, P. (2013). A simple Home-Made Turbidimeter (HMT) for turbidity measurements using Hyalella curvispina Shoemaker 1942 (Crustacea: Amphipoda) for the assessment of environmental quality of coastal waters. Brazilian Journal of Oceanography, 61(3), 169–206.

Brooks, S.J. y Mills, C.L. (2003). The effect of copper on osmoregulation in the freshwater amphipod Gammarus pulex. Comparative Biochemistry and Physiology Part A 135: 527–537.

Ccme.ca. (1999). Canadian Water Quality Guidelines for the Protection of Aquatic Life. Polycyclic aromatic hydrocarbons (PAH). [online] Disponible en: <https://ccme.ca/en/res/polycyclic aromatichydrocarbons-pahs-en-canadian-water-qualityguidelines-for-the-protection-of-quaticlife. pdf> [Recuperado el 25 de noviembre de 2021].

Casado-Martinez, M.C., Beiras, R., Belzunce, M.J., Gonzalez-Castromil, M.A., Marin-Guirao, L., Postma, J.F., ... DelValls, T.A. (2006). Interlaboratory assessment of marine bioassays to evaluate the environmental quality of coastal sediments in Spain. IV. Whole sediment toxicity test using crustacean amphipods. Ciencias Marinas, 32(1B), 149–157.

Casset, M.A., Momo, F.R. y Giorgi, A. (2001). Dinámica poblacional de dos especies de anfípodos y su relación con la vegetación acuática en un microambiente de la cuenca del río Luján (Argentina). Ecología Austral, 11, 79–85.

Chapman, P.M. y Wang, F. (2001). Assessing sediment contamination in estuaries. Environmental Toxicology and Chemistry, 20, 3–22.

Deaver, E. y Rodgers, J.H. (1996). Measuring bioavailable copper using anodic stripping voltammetry. Environmental Toxicology and Chemistry, 15(11), 1925–1930.

Del Brio, J., Montagna, C.M., Lares, B.A., Parolo, M.E. y Venturino, A. (2018). Chemical characterization and toxicity of water accommodated fraction of oil on the South American native species Hyalella curvispina. Environmental Toxicology and Pharmacology, 60, 209–215.

Delgado, L., Guerao, G. y Ribera, C. (2011). Effects of different salinities on juvenile growth of Gammarus aequicauda (Malacostraca: Amphipoda). International Journal of Zoology, 2011, (Article ID 248790), 6p.

Environment Canada. (1992). Biological test method: acute test for sediment toxicity using marine and estuarine amphipods. EPS 1/RM/26. Environmental Protection, Conservation and Protection, Ottawa, Ontario.

Environment Canada. (1997). Environmental Protection Series. Biological Test Method: Test for survival and growth in sediment using the freshwater amphipod Hyalella Azteca. EPS 1/RM/33.

Freitas Da Silva, T., De Almeida Azevedo, D. y Aquino Neto, F.R. (2007). Distribution of Polycyclic Aromatic Hydrocarbons in surface sediments and waters from Guanabara Bay, Rio de Janeiro, Brazil. Journal of the Brazilian Chemical Society, 18(3), 628-637.

FREPLATA (2001). Catálogo ilustrado de los organismos zoobentónicos colectados en la campaña de prospección ambiental del Río de la Plata.

Gauthier, P.T., Norwood, W.P., Prepas, E.E., Pyle, G.G. (2016). Behavioural alterations from exposure

to Cu, phenanthrene, and Cu-phenanthrene mixtures: linking behaviour to acute toxic mechanisms in the aquatic amphipod, Hyalella azteca. Aquatic Toxicology, 170, 377–383.

Giorgi, A. y Tiraboschi, B. (1999). Evaluación experimental del efecto de dos grupos de macroinvertebrados (anfípodos y gasterópodos) sobre algas epífitas. Ecología Austral, 9, 35–44.

Giusto, A. y Ferrari, L. (2008). Copper toxicity on juveniles of Hyalella pseudoazteca (González and Watling, 2003). Bulletin of Environmental Contamination and Toxicology, 81, 169–173.

Giusto, A., Somma, L.A. y Ferrari, L. (2012). Cadmium toxicity assessment in juveniles of the Austral

South America amphipod Hyalella curvispina. Ecotoxicology and Environmental Safety, 79, 163–169.

González, E., (2003). The freshwater amphipods Hyalella Smith, 1874 in Chile (Crustacea: Amphipoda). Revista Chilena de Historia natural, 76, 623–637.

Graça, M., Rodrígues-Capítulo, A., Ocón, C. & Gómez, N. (2002). In situ tests for water quality assessment: a case study in Pampean rivers. Water Research, 36, 4033–4040.

Grosso, L.E. y Peralta, M. (1999). Anfípodos de agua dulce Sudamericanos. Revisión del género Hyalella Schmitt. I. Acta Zool. Lilloana, 45, 79–98.

Ingersoll, C.G. (1995). Sediment toxicity tests. En: Rand, G.M. (Ed.) Fundamentals of Aquatic Toxicology (pp. 231–256). 2nd ed. Taylor and Francis, Washington, DC.

Jergentz, S., Pessacq, P., Mugni, H., Bonetto, C. y Schulz, R. (2004). Linking in situ bioassays and population dynamics of macroinvertebrates to assess agricultural contamination in streams of the Argentine pampa. Ecotoxicology and Environmental Safety, 59, 133–141.

Lee, C.M. y Petersen, C.H. (2003). Effects of developmental acclimation on adult salinity tolerance in the freshwater-invading copepod Eurytemora affinis. Physiological and Biochemical Zoology, 76(3), 296–301.

Lotufo, G.R. y Fleeger, J.W. (1997). Effects of sediment-associated phenanthrene on survival, development and reproduction of two species of meiobenthic copepods. Marine Ecology Progress Series 151: 91–102.

Luoma, S.N. & Ho, K.T. (1993). Appropriate uses of marine and estuarine sediment bioassays. En: Calow, P. (Ed.) Handbook of Ecotoxicology (pp. 193–226). Vol.1. 1st ed. Blackwell Scientific Publications, Oxford.

Mugni, H., Paracampo, A., Demetrio, P., Pardi, M., Bulus, G., Ronco, A. y Bonetto, C. (2016). Toxicity Persistence of Chlorpyrifos in Runoff from Experimental Soybean Plots to the Nontarget Amphipod Hyalella curvispina: Effect of Crop Management. Archives of Environmental Contamination and Toxicology, 70, 257–264.

National Research Council. (1985). Oil in the Sea: Inputs, Fates, and Effects. Washington, DC: The National Academies Press. Nebeker, A.L. y Miller, C.E. (1988). Use of the amphipod crustacean Hyalella azteca in freshwater and estuarine sediment toxicity test. Environmental Toxicology and Chemistry, 7(12), 1027–1033.

Peluso, M.L. (2011). Evaluación de efectos biológicos y biodisponibilidad de contaminantes en sedimentos del Río de la Plata y afluentes. Tesis doctoral. Universidad Nacional de La Plata. 178p.

Peluso, L., Giusto, A., Bulus Rosini, G.D., Ferrari, L., Salibián, A. y Ronco, A.E. (2011). Hyalella curvispina (Amphipoda) as a test organism in laboratory toxicity testing of environmental samples. Environmental Bulletin, 20, 372–376.

Phipps, G.L, Mattson, V.R. y Ankley, G.T. (1995). Relative sensitivity of three freshwater benthic macroinvertebrates to ten contaminants. Archives of Environmental Contamination and Toxicology, 28, 281–286.

PoideNeff, A. y Carignan, R. (1997). Macroinvertebrates on Eichhornia crassipes roots in two lakes of the Paraná River floodplain. Hydrobiología, 345, 185–196.

Poretti, T. I., Casset, M.A. y Momo, F. (2003). Composición y dinámica poblacional de Hyalella curvispina en el arroyo Las Flores (Cuenca del río Luján). Biología Acuática, 20. Pyle, G.G. y Mirza, R.S. (2007). Copper-Impaired chemosensory function and behavior in aquatic animals. Human and Ecological Risk Assessment, 13, 492–505.

Rand, G.M., Wells, P.G. y Mc Carthy, L.S. (1995). Introduction to aquatic toxicology. En: Rand, G.M. (Ed.), Fundamentals of Aquatic Toxicology (pp. 3–67). 2nd ed. Taylor and Francis, Washington, DC.

RIKZ. (1999). The 10d marine amphipod Corophium volutator mortality sediment toxicity test. Standard Operating Procedure Nr: SPECIE-01. National Institute for Coastal and Marine Management (RIKZ), The Netherlands, p. 17.

Saigo, M., Marchese, M. y Montalto, L. (2009). Hábitos alimentarios de Hyalella curvispina Shoemaker, 1942 (Amphipoda: Gammaridea) en ambientes lénticos de la llanura aluvial del Río Paraná medio. Natura Neotropicalis, 40, 1y2: 43–59.

Sanz-Lázaro, C., Marin, A., y Borredat, M. (2008). Toxicity Studies of Polynuclear Aromatic Hydrocarbons (PAHs) on European Amphipods. Toxicology Mechanisms and Methods, 18(4), 323-327.

Solis, M., Paracampo, A., Bonetto, C. (2019). Acute Toxicity of Chlorpyrifos to Hyalella curvispina: Comparison of species sensitivity and assessment of environmental risk. Environmental Processes, 6, 107–117.

Somma, A., Giusto, A. y Ferrari, L. (2011). Manual de producción de Hyalella curvispina en laboratorio. 1a ed. - Ushuaia: Utopías, 2011.25p.

Suedel, B.C., Deaver, E. y Rodgers, J.H. (1996). Experimental factors that may affect toxicity of aqueous and sediment-bound copper to freshwater organisms. Archives of Environmental Contamination and Toxicology, 30, 40-46.

Tani, K., Watanabe, H., Noguchi, M., Hiki, K., Yamagishi, T., Tatarazako, N. y Yamamoto, H. (2021). Toxicity assessment of typical polycyclic aromatic hydrocarbons to Daphnia magna and Hyalella azteca in water-only and sediment–water exposure systems. Science of The Total Environment, 784, 147156.

USEPA (United States Environmental Protection Agency). (1984). Ambient water quality criteria for copper. [online] Disponible en: https://www.epa.gov/sites/default/files/2019- 03/documents/ambient-wqc-copper-1984.pdf [Recuperado el 25 de noviembre de 2021].

USEPA (United States Environmental Protection Agency). (1994). Methods for assessing the toxicity of sediment-associated contaminants with estuarine and marine amphipods. EPA/600/R- 94/025. Office of Research and Development, Narragansett, RI.

USEPA (United States Environmental Protection Agency). (2000). Methods for measuring the toxicity and bioaccumulation of sediment associated contaminants with freshwater invertebrates.2nd edition EPA/600/R-99/064. Office of Water, Office of Science and Technology. 192p.

USEPA (United States Environmental Protection Agency) (2007). Aquatic life criteria-copper. [online] Disponible en: https://www.epa.gov/sites/default/files/2019-02/documents/alfreshwater-copper-2007-revision.pdf [Recuperado el 25 de noviembre de 2021].

UTHSCSA Image Tool. desarrollado por el Centro de Ciencias de la Salud de la Universidad de Texas.Disponible en https://imagetool.software.informer.com/Descargar-gratis/ [Recuperado el 25 de noviembre de 2021].

Verbruggen, E.M.J. y van Herwijnen, R. (2011). Environmental risk limits for phenanthrene. National Institute for Public Health and the Environment- Ministry of Health, Welfare and Sport. RIVM Letter report 601357007.

Verrhiest, G., Clement, B. y Blake, G. (2001). Single and combined toxicity of sediments-associated

PAHs on three species of freshwater macroinvertebrates. Ecotoxicology, 10: 363–372.

Waller, A., Ramos, T. y Verdi, A. (2020). Estructura poblacional y aspectos reproductivos de una población de Hyalella curvispina (Shoemaker, 1942) de Uruguay. Boletín de la Sociedad Zoológica de Uruguay, 29(2), 106–115.

West, C.W., Mattson, V.R., Leonard, E.N., Phipps, G.L. y Ankley, G.T. (1993). Comparison of the relative sensitivity of three benthic invertebrates to copper-contaminated sediments from the Keweenaw Waterway. Hydrobiologia, 262, 57–63.

Wu, J.; Yan, Z., Liu, Z., Liu, J., Liang, F., Wang, X. y Wang, W. (2015). Development of water quality criteria for phenanthrene and comparison of the sensitivity between native and non-native species. Environmental Pollution, 196, 141–146.

Published

2021-12-28

How to Cite

BOUVIER, M. E.; MUNIZ MACIEL, P. SENSITIVITY OF Hyalella curvispina SHOEMAKER, 1942 (CRUSTACEA, AMPHIPODA) TO COPPER, PHENANTHRENE AND SALINITY. Boletín de la Sociedad Zoológica del Uruguay, [S. l.], v. 30, n. 2, p. e30.2.2, 2021. DOI: 10.26462/30.2.2. Disponível em: https://journal.szu.org.uy/index.php/Bol_SZU/article/view/189. Acesso em: 24 nov. 2024.